N93-70955

A STRUCTURE

(NASA=LR-191400)
COVERAGFE TODL FOR

SOFTWAR

Ada {TRADEMARK)
(Maryland univ.)

£ SYSTEMS

Unclas

i np

19761

NASA-CR-191400

~

ADA™

0136158

A STRUCTURE COVERAGE TOOL FOR
SOFTWARE SYSTEMS

Y.

/y56‘5'~/€$5
N AS 77
TN G/ —C
/36,58
P73

Liqun Wu, Victor R. Basili, and Kar| Reed®

Department of Computer Science
University of Maryland

College Park, MD 20742

ABSTRACT

Coverage metrics have traditionally been used.w
evaluate the effectiveness of procedures for testing
software systems. In practice, however, the metria' are
heavily influenced by the characteristics of traditional
programming languages such as Fort!'m and Pascal.
Languages such as Ada differ from traditional languages
to such an extent that it is necessary to develop new
metrics.

This paper proposes a number of coverage measures
for Ade features such as packages, gemeric units, and
tasks, and discusses their interpretation in relation to
the traditional coverage metrics. It also propose a
mechanism for collecting these coverage measures. In
addition, it suggests that coverage metrics may also be
interpieted as indicators of dymamic system
performance.

INTRODUCTION

The last few years have seen an increased emphasis
upon the development of techniques for assessing and
controlling the quality of software products. Research
in the USS8 5 213.4 4nd practice in the Japanese
computer manufacturers’ software factoriesi’. 26,12, 23
bave recognized the importance of measures of program
structure on one hand, and techniques for quality
assurance on the other as fundamenta] sspects of
software quality assurance.

* The third suthor is on leave from the
Department of Computing at the Roysl Melbourne
Institute of Technology, Melbourne, Australia.

Ada is a trademark of the U.S. Department of
Defense - Ada Joint Program Office.

Support for this research provided by NASA Grant
NSG-5123 to the University of Maryland.

294 Joint Ada Conterance 1987

The vast bulk of the work to date distinguishes
between measures of program and system structure,
which ¢an be obtained by automatic analysis of source
code, and dynamic measures of program quality which
develop confidence in program quality by testing the
system?? would be McCabe's cyclomatic aumber for the
former!S and test coverage for the latterl®. i4

There have been few reports of eflorts to integrate
both static aad dynamic measures to allow an overal]
assessment of software quality.

The TAME® project at the University of
Maryland's Department of Computer Science intends to
integrate tools for obtaining both static and dynamic
measures of program quality into a single environment.
This will allow the quality of a soltware product to be
monitored at all stages of its evolution and allow
Judgements to be made upon the basis of various values
obtained. Although TAME is overwhelmingly language
independent, its first application will be for monitoring
systems written in Ada.

Most of the useful code-based metrics measure the
static structure of the source because there is a serious
shoru%e of measures of dynamic structure, with Conte
et. al.1% citing only a simple liveness measure.

' Considerable experience has been gaiged in using
lhese two classes of metrice to study systems
implemented in traditional programming languages such
as FORTRAN, COBOL, Pascal, and PL/I, and many of
the quantities measured reflect their characteristics.

The availability of languages such as Ada and
PROLOG, and their use in applications systems,
pecessitates the development of new measures, since
these languages differ significantly from those currently
under study. Structural coverage metrics will need o
be tailored to allow for the impact of these new features
upon programming practice.

® See® and” for a complete deseription.

PRECEDING PAGE BLANK NOT FILMED

-

i

r
1

oV U G U G T A U o O U g

The results of a joint study between the University
of Maryland and General Electric ! show that a number
of Ada features such as packages, generic units,
exceptions, and tasks, appear to be misused, and to be a
source of program {aults. Applying existing measures to
Ada programs without explicitly recognizing its uniquezo
characteristics may lead to a totally misleading picture
of a systems structure and quality.

Traditional measures of test coverage include??

a) the percentage of source code instructions executed,

b) the percentage of partial paths traversed®,

¢) percentage of predicate outcomes exercised,

d) the percentage of procedure or function calls made,
e) the percentage of procedures executed,

The first three of these measures are essentially
statement level measures and reveal little about the
system structure. On the other hand, the last two
measure the procedural level and provide an indication
of system structure. ’

Measures relating to procedure usage will need to
be reassessed because of the impact of Ada's generic
units and facilities for partitioning systems. In addition,
new measures should be defined for tasks and exception
handling.

Measures of the dynamic behavior of a large system
consisting of & pumber of program-units cannot be
obtained easily by examining its source code. They
may, however, be deduced from an analysis of the
system's bebavior during execution® and interpretation
of statistics normally associated with testing, such as
various coverage measures, and for altering the
strategies used for planning testst®

The objective of test coverage measures is to sllow
some estimate to be made of the extent to which a set
of tests is likely to have revealed errors in the test
subject18:25.22 generation, and the interpretation of
coverage metrics, will depend upon whether a series of
unit tests, s subsystem test, or & complete system test
are being plannped. -

In what follows, we propose a number of measures
of static and dynamic structure for systems
implemented in Ada. We discuss their interpretation in
relation to traditional test coverage measures as s first
step in the development of a more complete method of
dynamic structure measurement through testing. These
are, in general, re-interpretations of existing measures.

Many of the measures are not specific to Ada and
can be applied to sny language supporting multiple
entry points,(e.g. Fortran, PL/I, Assembler), internally
and exterpally callable procedures (e.g. Cobol, PL/1

€ A partial path is the shortest section of code
connecting two decision statements which does not
contain any other decision statement.

Assembler), generic declarative structures, or tasking
(e.g. Module). ’

ADA AND COVERAGE MEASURES

There are four important features of Ada which
impact the design of coverage measures which will be
discussed further in this paper. These are:

a) generic units
b) packages

¢) exceptions, and
d) tasking.

The first two of these deal with the procedural level
of system structure, while the last two support non-
deterministic system behavior. A complete set of Ada
coverage measures must include the statement level

metrics mentioned earlier. Table I shows the
relationship of the various measures.

Generic units may be instantiated into & new unit
by s declaration either overloading an existing unit
name or creating & new one. [nstantiations may apply &
generic unit to different types. It is not possible,
therefore, to assume that a particular generic package
has been properly tested until all its instantiations have
been tested. Steps must also be takea to ensure that all
references to individual instantiations are correctly
counted. At least one currently available path analysis
tool fails to make these distinctions

Ada’s provision for block statements, executable
units containing declarations!! , raises the possibility of
s particular instantiation of a generic procedure not
actually being elaborated with the result that type
checking may not be complete?. We will peed a
coverage measure for generic unit elaboration for this
reasop.

Backages and Librarjes

The potential use of Ada library units and
packages as devices for arbitrarily partitioning a system
also presents a problem® In this case, the public entities
in the package or library constitute a potential set of
entities that can be referenced from any part of the
project. It will therefore be necessary to decide which
entities should be included in coverage counts snd the
method to be used in categorizing them.

9 We note that block statements also require special
treatment for similar reasons, however, we have limited
our discussion to those features which illustrate our
point.

Joint Ada Conference 1937 295

A particular package may contain units which can
be referenced from within the package as well. This
provides another basis for estimating coverage®.

Ada’s tasking-and exception bandling mechanisms
add s new dimension to path coverage since it may be
desirable to verify that paths which traverse more than
one program umit are exercised and to verify that
various interactions actually oceur. Each of these
aspects of Ada must be accounted for in any proposed
measures and explicitly considered in their
interpretation.

The issues discussed here apply to other languages
which support similar features.

COVERAGE METRICS FOR ADA

We focus on the impact of Ada's facilities for
partioning systems and on the impact of generic units
because these are the features which necessitate re-
evaluating the approach to coverage measures. Any
complete set of measures for Adas would, of course,
include specific examples for packages and procedures of
both the generic and non-generic variety. In that sense,
some of our definitions are themselves generie.

We wish to distinguish between the static structure
and dynamic behavior of a system which may consist of
Ada library units, packages and a program. We may
then obtain ag indication of system complexity. based
upon this difference.

Let us consider a system which references *“p"
different units. Let us also suppose that there gre o
total of “m" references to the “n" uaits. The ratio o/m
would provide an indication of the static complexity of
such a system. Two systems may bave identical (n,m)
pairs; however, they may have diflerent interactive
complexity since one may actlvate most of its references

to the m units, while the other may not.

The total aumber of references executed by a set of
tests which represent a typical input would also provide
20 indication of absolute dynamic complexity. The
ratic a/m corresponds to s procedure call coverage
metric.

We will bsse our discussion on procedures since
these are among the most significant program units
from & system structure point of view. A system written
in Ada will appear as 1 collection of packages and

¢ Other languages share this property.

298 Jolnt Ada Conference 1987

subprogram units, each of which may have multiple
procedures,

We can distinguish several different types of
procedure reference, depending on the location of 5
reference and its target....

3) Intra package reference - the reference in the
current package is to a procedure in that package,

b) Extra package reference ... the reference in the
current package is o a procedurs In some other
package,

¢} Ioter package reference ... the reference is directed
to a procedure in this package from some program
unit outside the package,

d) Combined inwards Package references ... the sum of
a) and ¢), and

2) Combined outwards Package references ... the sum
of a) and b).
These can be repeated for the program reference

giving

f) Intra program reference ... the reference is to o
procedure in the program, and

g} Extra program reference ... the reference is to a
procedure outside the program.

e

It is possible to define a wide range of these metries
which measure the amount of interaction between
specific packages; however, we restrict ourselves to the
following simple examples to illustrate the principlef,

A) The number of extra referenced procedures ig o
Package called compared to the number of
procedures in & package

B) The number of combined igwards procedures
referenced procedures in a package called compared
to the number of combined inwards package
references, and

C) The number of extra procedure references in a
y Ppackage executed compared to the number of extra
} procedure references.

Measure A cannot be interpreted without a
knowledge of the the aumber of combined inwards
referenced procedures for the package concerned and the

context of the test. It will convey no information ig °

addition to a static count of the referenced procedures
in & package if the package is in a system test.
However in the case of a unjt test, it will show that the
componeats of the package are inadequately tested.

' We could consider interaction between a given
package and each of its partners, and some subset of its
partners, for example. We could also consider alf possi-
ble combinations of these against the procedure refer
ence categories presented above.

N

r-—

r"'T

| A

o

-

Measure B will show the extent to which a
particular package's inwards calls are being utilized by a
particular test. It will, as the procedure coverage
asymptotes, provide sn indication of the total dynamic
complexity of the package's inwards communications.

It is also Interesting to consider the implications of
this measure for a single test case since it provides an
indication of the dynamic complexity of the path traced
by the individual case. This may be useful in judging
the difficulty in debugging faults found during the test.

A similar interpretation can be applied to to
measure C.

GENERICS AND COVERAGE MEASURES

A generic unit is a template from which particular
instances of s general unit can be obtained. A
declaration provides a program unit pame and an
optional generic_actual_part® specifying the name and
the types to used by this particular version of of the
package. The elaboration of the declaration of an
instance of a generic unit creates s new version which is
distinct from other versions generated from the same
generic unit. This is true even if instances have been
instantiated with the same generic_actual_part.

Instantiated units are indistinguishable from
ordinary units. All relevant coverage measures should
therefore be collected for both types of units. For
example, procedure call coversge measures should
clearly be collected in both cases,

In addition, elaborating an instantiation eflectively
completes the process of type declaration and can
produce errors. Coverage measures are necessary for
this case also. Any knowledge of the instantiation can
be obtained only by an examination of the instantiating
statement and the generic unit, and any data about its
behavior can only be collected by monitoring the
original generic package or the point of instantiation.

The mechanism used to obtain coverage measures
for procedures cannot readily be used for generic units.
We shall discuss an appropriate method in the section
on implementation®.

§ See!l page 12.8.

b The Ada instantiation and generic package
mechanism automates the process of type traaslation
which might otherwise be achieved explicitly by & pro-
cedure which existed solely for that purpose. Moaitoring
procedure usage would, of course, be simpler in such a
case, but the semantics of the linkage between a pro-
cedure pair might not be apparent. Ada makes the link
explicit but complicates the measurement process.

Cont

Coverage Measures For Generics

We will discuss an number of measures for generic
units, focusing on Instantistion since it is this feature
that makes the generic unit special. -

I. The first dynamic measure for generic unit should be:

o Elaboration Coverage for a Generic Unit

¢¢ the number of instantiations elaborated for a
generic unit divided by the total number of actual
instantiations for this generic unit.

It is necessary because type checking can not be said to
be complete until a declaration Is elaborated, as we have
slready said.

This measure is essentially a procedure coverage
metric, but it may also be used to provide an indication
of the extent and nature of actual reuse of s particular
generic unit, as distinct from that which was intended.

An equivalent static measure would be the cumber
of instantiating statements for a given generic unit.

e Total Elaboration Coverage for Generic Units

If the average number of instantiations actually
elaborated for all genmeric packages is large, it could
mean that this system is making effective use of its
subcomponents.

o Generic Unit Instance Coverage

From a test confidence point of view, exercising
each instance of a generic unit is necessary since errors
occurring in one instance may not appear in another. A
test set which exercises a large proportion of generic
instances without producing errors will raise user
confidence significantly. We recommend two measures
in this case, one for individual generics, and one for s
complete system.

Individual instantiations may bhave different
combinations of data types and operators as parameters
as represented by their individual generic_actual_part.
This is & major reason for insisting that each instance of
a gemeric unit be exercised. Ada's overioading of
operators can lead to a situation where a previously
tested program unit may be used with new data types
which are oot valid for its semantics. However, the
instantistion will not be invalidated il there exist
operators for data types supplied. This is a sufliciently
subtle problem to warrant special attention.

It is therefore important to collect coverage
measures for data type usage which provide a
perspective of how data types are exercised dynamically.
We need to know the the structure of each unique
generic_actual_part associated with each generic
procedure, since this specifies a semantically unique
instantiation.

Joint Ada Conference 1987 297

» Unique Instantiation

®* an instantiation of a Particular executable generie
unit is said to be unique if the general_actual_part
specified differs in terms of actual type usage from
that used in any other instantiation of that generic
unit,
Based on this, we get the following coverage
measure:

¢ Unique Instantiation Execution Coverage

** the number of unique instantiations being executed

for a executable generic package divided by total

umber of unique instantiations declared for that
generic package,

A high value of this measure means that the unique
instantiations for the generic have been extensively
tested. The tester may have Increased confidence in the
unit if o errors were detected,

It may also be useful to exercise a generic package
with generic_actual_parts applying it w a variety of
data types. This would require some prior knowledge of
the problem domain for which the unit was intended. A
testing philosophy of this type could lead to the
certification of a generic package for a set of data type
combinations.

The method of collecting this information will be
discussed in the section on implementation.

Barameter Utilization

A generic procedure may have been ecreated by
extending the application of some existing procedure to
8 Hew Llype set. It will be necessary, therefore, to
monitor the internal Statement coverage, during
subsequeat testing, to ensure that the behavior of aj]
operators are verified. One particular possibility Is that
the type of only one of A generic procedure’s parameters
may be altered. In this e + & tester will be interested
in ensuring that 4 statements affected by that
Parameter are exercised,

We can use the method described by Rapp and
Weyuker!® to obtain the set of “all-use-paths” for o
particular parameter®, Designing tests which ensure
that the set of “all-use-paths” for 4 particular
parameter were covered would ensure that 4
statements in which the Parameter appears are
exercised. This will ensure that any new uses of type
coaversions and Operators are actually tested.

The following metric would indicate effectiveness of
& parameter use coverage test.

s Parameter Usage Coverage

** the number of Statements in which a parameter
appears which are executed divided by the total
number of those statements.

Tests aimed at collecting this metric would ensure

298 Joint Ada Confersnce 1987

that the impact of parameter type changes was
evaluated.

A similar static measure could be proposed which
would show the the extent to which a package wag
likely to be influenced by a particular Parameter,

¢ Parameter Usage Factor

** the number of statements in which a parameter
3ppears compared to the tota] number of
Statements.

IAWXQEP_‘HQ&QMME

A complete system written in Ada may contain
independent tasks, A full test of such a system may be
the oaly satisfactory mechanism of evaluating task
interaction, since task unit tests would validate the
function of the task and not its user. A similar
argument can be applied to exceptions; a ynijt
containing exceptions can not be considered tested untij|
it bas raised all its exceptions. Coverage measures are
therefore required for tasks and exceptions. In the case
of the former, we would wish to know...

3) whether every task was activated,
b) whether every eatry to a given task is used.

Coverage metrics can be defined readily for these
cases.

An identical set of measures would be needed for
exceptions,

While not a coverage metric, we advocate recording
the task execution sequeace. This wijl simplify the
detection of errors due to poor synchronization
strategies and allow the construction of tests designed to
force particular task ordering.

?

IMPLEMENTATION
¥

The statistics necessary for computiag the coverage
measures that we have proposed can be collected by the
use of automatically inserted probes' written in Ada is
under construction as part of the TAME project?
environment.

b See also Weiser et. 21,25 and Weiser24

' See Brown and Hoffman? and Styck;2ls 22 for ex-
amples from other languages.

| p—— p——y Py ——
HL__..(ﬁ__.l 1 L o _l.——‘l._.__l I |

. H.‘ |
| WSS B N

-

Structure test coverage execution requires two
components: an instrumented program and an execution
monitor. Probes are inserted into the source code to
obtain the instrumented program. The execution
monitor initializes the prooes, records when they are
executed, and reports on its results.

We use a generic probe package to implement the
execution monitor. Elizabeth Katz first used this
approach in s prototype coverage system, but that
approach has been extended. As Fig. 1 shows, this
package has two generic parameters and declares two
procedures. Size (a parameter given to the generic
package Initiate_record) indicates how many probes
have been added to the code. The increment procedure
is called with a probe number in this range whenever
the associated probe in the instrumented program is
executed. A separate probe number is allocated for each
unique object under observation. The report procedure
reports on the results whenever it is called.

We will now consider how the nature of these
probes varies with the various items being monitored
and discuss their insertion in the program to be
instrumented.

TABLE [. RELATIONSHIP BETWEEN TRADITIONAL

AND ADA COVERAGE MEASURES
LANCUAGE AND MEASURE
SYSTEM FEATURE TRADITIONAL ADA
Statement, Statemaent.
Statement Lavel Pua, Pub.

Predicaie Coversge Predicate Coversge

Procedural Level Call and Cail and
Procedure Coversge P rocedyre Caversge

Genaric — {astance and
Elsborstioa Coversge
Package.

Syssem Purtiosing — iacer and Intrs
Puckage Coversge
Task sad

Task sad Exevption — Esxception Caversge

Caversge Tosk Sequence

Instrymenting The Program

An instrument econsists of two components: the
probe and its monitor. The probe is inserted in the
code, and the probe monitor collects the data. .

Probe Monitor

Probe monitors will be implemented as gesgeric

package. They comsist of variables which record values
for some coverage measures whenever the procedure
increment is called and compute the necessary statistic
when the procedure report is called at the end of each
unit's execution. .

Inserting & probe into a generic unit would cause
multiple instances of that unit to call a single probe
monitor. Some difficulty would then be experienced in
deciding which instance of the package had actually
called the moaitor.

generic
instance_po : natural;
c_table : record_type;
package probe_monitor is
procedure increment{probe_number: 1.size);
procedure report; .
end probe_monitor;

Fig. 1. Structure of probe monitor

Using generic packages for probe monitors solves
that problem since a new version of the mouitor can be
created with every instantiation of the the unit being
monitored.

This is implemented by inserting an instantiation
statement for the probe monitor inside the specification
part of every generic package. Whenever a generic
package is instantiated, a new instance of the probe
monitor is generated. The variables in one instance will
give coverage measures for one instance of a generic
package. Therefore, we can easily distinguish the
coverage measures of a generic packsge for different
instances. The structure of the instrumented
specification part for a generic package is shown in Fig.
2.a. The instantiation for such a generic package is
given in Fig. 2.b.

There are two parameters passed to the probe
monitor. The first is an iastance number identifying the
particular Instantiation of the generic unit, and the
second is a table represented by Fig. 3. The instance
number is not used for non-generic units.

. ! The table has two components. The first one gives
the unit name (e.g. name of generic package), and the
second one Is an array which holds details of each probe
active for that generic uniti. The details inciude the
probe's usage, location, count, value, etc. Therefore,
every instance of the probe monitor must be aware of
the meaning of each of its probes and the total number
in use.

The tables themselves are instances of the generic
table shown in Fig. 4. Property_list is 8 record whose
structure is determined by the pumber and nature of
the properties of each probe as described in the bottom

| The non-generic units a treated as a single unit.

Joint Ada Confersnce 1987 299

generic

¢_no: natural;
package XX is

XX_mounitor is new prc;be _monitor
(instance _fo=>¢_no; c_table=>xx_table);

end XXG

a. The structure of instrumented specification
part for & generic package

¥Y is new xx(...; c_no ==> xx_no);

b. The instantiation statement for
“the generic package

Fig. 2

Unit name

Probe name

[(Usage] [location | " ...

Information for each probe
Fig. 3

row of Fig. 3. The generic table has the form shown in
Fig. 4.

Task Monitor

The task monitor is implemented by a task with
one entry which receives the signals from tasks and
records the sequence of task execution. Each task may
have several entries which may be invoked by other
Program uaits (including tasks) and may also have
Statements which invoke entries in other tasks. Since
the tasks cag be executed concurreatly, the invoking
Sequence may be very complicated. The task monijtor

300 Joint Ada Confersnce 1987

records the invoking sequence for esch system. The
structure of the task monitor is given in Fig. 5.

The specification part of the task monitor will be
inserted before the main program; therefore, the
monitor can run concurrently with the main program.

The entry has one parameter for receiving signals.
Whenever an entry in a task is invoked, the task
monitor is invoked by a statement inserted at the
beginning of the original task entry. This statement
passes the name of this entry to the moaitor.

generic
unit_name : string;
size : natural;.
package initiate_record is
type table_type is record
information : property_list;

serial_po: natural;
end record;

type table is array [1..size] of table_type;
type record_type is record
Dame : string == unit_pame;
asme_no_table : table;
end record;

end initiate_record;

Fig. 4 Generic Table

task task_monitor is
Yentry signd(name_o(_the_calling_procedure)
an task_monitor;
task body task_moaitor is
begin
accept signal(name) do
end signal;
= put the name in a [ist
end task_monitor;

Fig. 5 Structure of Task Monitor

‘.

-

—

ol |

—J v

-

- -

Probes

The probes for recording non-task activity consist
of a call to the increment procedure in the appropriate
probe monitor #ad code to ensure that the call is made
only once. As already discussed, the probes are inserted
before or after the components to be measured and may
contain code which determines whether the event being
monitored actually occurred.

A structure coverage tool which collects s full range
of Ads related messures is currently being constructed
a3 part of the TAME project. The tool will implement
the instrumenting concepts described in this paper and
will be used to explore the impact of Ada on testing
strategies.

CONCLUSION

We have discussed the impact that a language such
as Ada has upon the traditional measures used for
evaluating test effectiveness. In particular, we have
drawn attentlon to the impact of Ada's system
partitioning facilities, and its generic capabilities, and
suggested new measures which recognize them explicitly.

We have proposed that some individual language
features be counted explicitly during testing. The
particular features difler significantly from those
traditionally measured. Previously, ensuring that all
statements and components were executed would be a
reasonable goal. Applying those same criteria to Ada
programs without explicitly considering these new
features might lead to unjustified confidence in the
results of some testing processes. A failure to
distinguish between particular instantiations of generic
units is a case In point.

We have also suggested that coverage measures
may also be useful in determining a system's dynamic
characteristics and as an indicator of its complexity.

Our future work will include a further investigation
of these concepts.

ACKNOWLEDGEMENTS

The authors wish to acknowledge discussions with
s number of TAME project members and faculty in the
Department of Computer Science at the University of
Maryland. John Gannon and Mark Weiser acted as
sounding boards and sources of information, snd
Elizabeth Katz anod Dieter Rombach, assisted in
clarifying a number of aspects of Ada's semaatics.

We are particularly indebted to Ms. Katz who read
several early drafts and assisted in constructing some
test cases, Her assistance was invaluable and enabled
the paper to be completed on schedule.

We thank them for their help, however, we must
accept the responsibility for the opinions expressed
herein, which are our own unless otherwise stated.

REFERENCES

1. V. R. Basili, E. E. Katz, N, M. Panililo-Yap, C.
Loggis Ramsey and, “Examining the Modularity of
Ada Programs,” JEEE Computer Vol. 18 No.
9 pp. 53-85 (Sep. 1985).

2. V.R. Basili and EE. Katz, “METRICS OF
INTEREST IN ADA DEVELOPMENT," [EE-CS
WORKSHOP ON SOFTWARE ENGINEERING
TECHNOLOGY TRANSFER, pp. 22-29 IEE
COMPUTER SOCIETY PRESS, (1983).

3. V. R. Basili and J. Ramsey, “Structural Coverage
of Functional Testing," Computer Science
Technical Report Series TR-14427
Department of Computer Science.
of Maryland, (Sept. 1984).

4. VR. Basili and D.M., Weiss, “A Methodology for
Coliecting Valid Software Enginering Data,” IEEE
Trans. on Software Eng. Vol. SE-10 No. 8 pp.
728-738 (Nov. 1984).

5. V.R. Basili, “Quantatative Evaluation of Software
Methodology,” Proc. First Pan Pacific Computer
Conference, Australian Computer Society, (Sep.
1985).

8. V. R. Basili and H. D. Rombach, “Tailoring the
Software Process to Project Gosals and
Environments,” TR-1728, Department of Computer
Science, University of Maryland, (Nov. 1986). To
appear in the Proc. of the Ninth Iaternational
Conference on Software Engineering,
Monterey USA March-April 1087

7. V. R. Basili and H. D. Rombach, “TAME:
TAILORING AN ADA MEASUREMENT
ENVIRONMENT,” Proc. of the Joint Ada
xCpn]cuuce. {March 16-10 1087).

8. V. R. Basili and E. E. Katz, “Examining the
Modularity of Ada Programs,” Proc. of the Joint
Ada Conference, (March 16-19, 1987).

9. J. R. Brown and R. H. Hoflman, “Evaluating the
Effectiveness of Software Verification- Practical
Experience With an Automated Tool,” FJCC
AFIPS Conf. Proc. Vol. 41, Part I pp. 181-190
(1972).

10. SD. Conte HE. Dunsmore and V.Y. Shen,
SOFTWARE ENGINERING METRICS AND
MODELS, The Begjamin/Cummings Publishing
Compaay, Inc, Menlo Park, Cal. 94025 (1988).

University

Joint Ada Conference 1987 301

11.

12.

13.

14.

15.

186.

17.

18.

19.

US DoD, “REFERENCE MANUAL FOR THE Ada
PROGRAMMING LANGUAGE," ANSI/MIL-
STD-1815-1989, United States Department Of
Defence, (Feb 17 1983).

K. Fujino, “Software Developmeat for Computers
and Communications at NEC," [EEE Computer
Vol.17 No. 11 pp. 57-67 (Nov. 1984),

W. Harrison K. Magel R. Kluczny and A. DeKock,
“Aylng Software Complexity metrics to Program
Maintenance,” IEEE Computer Vol. 15 No. 0 pP.
65-79 [EEE Computer Society, (Sep. 1982).

W. E. Howden, “A Survey of Dynamic Analysis
Methods,” IEEE Tutorial : Software Testing amd
Validation Techniques, pp. 209-231 IEEE
Computer Society Press

T. McCabe, “A Complexity Measure,” JEEE
Trans. Software Eng. Vol. SE-2 pp. 308-320 (Dec.
1976).

E. Miller, “Introduction to Software Testing
Techoology,” In Tutorial: Software Testing &
Validation (E. Miller and W. E. Howden, eds.) 2nd
Edition pp. 4-16 IEEE Computer Society, (1981).

Y. Mizuno, “Software Quality Improvement,”
IEEE Computer Vol. 16 No. 3 pp. 66-72 (Mar.
1083).

J. Ramsey and V. R. Basili, “ANALYZING THE
TEST PROCESS USING STRUCTURAL
COVERAGE,"” Proc. 8th International Conference
on Software Engineering, pp. 308-311 (August 28-
30, 1085).

S. Rapp. and E. J. Weyuker, Computer
Science Department Technical Report Report No.
23 Department of Computer Science Couraat
Institute of Mathematical Sciences New York
Ugiversity, (Dec. 1981).

302 Joint Ada Conference 1987

21.

2.

25.

26.

Jean E. Sammet, “Why Ada Is Not Just Another
Programming Language,” Communication of the
ACM vol. 29 , no. 8 p. 722 (Aug. 1986).

L. G. Stucki, “A Prototype Automatic Testing
Tool,"” FJCC AFIPS Conf Proc. Vol. 41, Part
T pp. 829-836 (1972). '

L. G. Stucki, “NEW DIRECTIONS IN
AUTOMATED TOOLS FOR IMPROVING
SOFTWARE QUALITY," Current Trends in
Programming Methodolgy, VolIl R. T. Yeh (ed.),
pp. 80-111 Preatice-Hall, Inc., (1977). 2ad ed.
IEEE Computer Society Press™ also in
"TUTORIAL: Software Testing & Validation” 2nd
ed. [EEE Computer Society Press

D. Tajima and T. Matsubara, “The Computer
Software Industry In Japan,” [EEE Computer Vol.
14 No. 5 pp. 89-06 (May 1981).

M. Weiser, “Program Slicing,” [EEE Trans. of
Software Engincering Vol. SE-10, No. 4 pp. 352-
357 (Jul. 1984).

M. D. Weiser J. D. Gannon P.R. McMullin,
“Comparison of Structural Test Coverage Metrics,"
IEEE Software Vol. 2 , No. 2 pp. 80-85 (Mar.
1985).

M. Zelkowitz, R. Yeh, R. Hamlet, J. Gaonon and
V. R. Basili, “Software Engineering Practices in the
US. aad Japan,” [EEE Computer Vol. 17 No.
8 pp. 57-66 (Jun. 1985).

e

—

i

——

{

ARV RN S ST R

¥

CRIGINAL PAQE IS
OF POOR QUALITY

Biographies
Liqun Wu is 2 graduate research assistant in
Computer Science Dept., University of Maryland. Her
research interest is in Software Engioeering. She
received her B.S. degree {rom the Computer Science
Dept., Xian Jiaotong University, China in 1082.

o Dept. Computer Science
University of Maryland
College Park MD 20742
(301) 454-8154

Victor R. Basili's biography and picture are
included with the paper “TAME: Tailoring an Ada
Measurement Environment” by V. R. Baasili and H. D.
Rombach in these proceedings.

Mr. Reed's address:

Dept. Computing

Royal Melbourne Institute of Technology
Melbourne, Vic. 3000

Australia
(03) 662-0611

Karl Reed is a Visiting Faculty Research
Associate in the Department of Computer Science at the
University of Maryland , College park. He is currently
on leave from the Department of Computing at the
Royal Melbourne Institute of Technology where he is
Senior Lecturer and Area Leader for Sofltware
Enginering. He received an Assoc. Diploma in
Communications Engineering from the Royal Melbourne
[nstitute of Technology in 1965, and as MSec ia
Computer Science {rom Monash University in 1084.
Reed has 22 years experience in the computer industry,
having worked at Elliott Bros.,, ICIANZ, Monash
University and L.M. Ericsson.

Reed was a research engineer with L. M Ericsson
Aust. from 1973 to 1976, and has research interests in
computer architecture, software engineering, linking
loaders, charging algorithms and technology policy. He
is currently National Chairman of the Australian
Computer Society Software Industry Committee, and
was made a Fellow of the ACS for his contribution to
the development of the Australian Software Industry.

Mr. Reed has served as Stream Chairman for
Software Engineering at the First Pan Pacific Computer
Conference in Melbourne during 1985, and is & member
of the program Committee for IEEE Compsac 1987. He
is a member of the [EEE Computer Society, the
Association for Computing Machinery and the
Institution of Engineers Australia.

Joint Ada Conference 1987 303

